基础查询
左边是mongodb查询语句,右边是sql语句。对照着用,挺方便。
db.users.find() select * from users
db.users.find({"age" : 27}) select * from users where age = 27
db.users.find({"username" : "joe", "age" : 27}) select * from users where "username" = "joe" and age = 27
db.users.find({}, {"username" : 1, "email" : 1}) select username, email from users
db.users.find({}, {"username" : 1, "_id" : 0}) // no case // 即时加上了列筛选,_id也会返回;必须显式的阻止_id返回
db.users.find({"age" : {"$gte" : 18, "$lte" : 30}}) select * from users where age >=18 and age <= 30 // $lt(<) $lte(<=) $gt(>) $gte(>=)
db.users.find({"username" : {"$ne" : "joe"}}) select * from users where username <> "joe"
db.users.find({"ticket_no" : {"$in" : [725, 542, 390]}}) select * from users where ticket_no in (725, 542, 390)
db.users.find({"ticket_no" : {"$nin" : [725, 542, 390]}}) select * from users where ticket_no not in (725, 542, 390)
db.users.find({"$or" : [{"ticket_no" : 725}, {"winner" : true}]}) select * form users where ticket_no = 725 or winner = true
db.users.find({"id_num" : {"$mod" : [5, 1]}}) select * from users where (id_num mod 5) = 1
db.users.find({"$not": {"age" : 27}}) select * from users where not (age = 27)
db.users.find({"username" : {"$in" : [null], "$exists" : true}}) select * from users where username is null // 如果直接通过find({"username" : null})进行查询,那么连带"没有username"的纪录一并筛选出来
db.users.find({"name" : /joey?/i}) // 正则查询,value是符合PCRE的表达式
db.food.find({fruit : {$all : ["apple", "banana"]}}) // 对数组的查询, 字段fruit中,既包含"apple",又包含"banana"的纪录
db.food.find({"fruit.2" : "peach"}) // 对数组的查询, 字段fruit中,第3个(从0开始)元素是peach的纪录
db.food.find({"fruit" : {"$size" : 3}}) // 对数组的查询, 查询数组元素个数是3的记录,$size前面无法和其他的操作符复合使用
db.users.findOne(criteria, {"comments" : {"$slice" : 10}}) // 对数组的查询,只返回数组comments中的前十条,还可以{"$slice" : -10}, {"$slice" : [23, 10]}; 分别返回最后10条,和中间10条
db.people.find({"name.first" : "Joe", "name.last" : "Schmoe"}) // 嵌套查询
db.blog.find({"comments" : {"$elemMatch" : {"author" : "joe", "score" : {"$gte" : 5}}}}) // 嵌套查询,仅当嵌套的元素是数组时使用,
db.foo.find({"$where" : "this.x + this.y == 10"}) // 复杂的查询,$where当然是非常方便的,但效率低下。对于复杂查询,考虑的顺序应当是 正则 -> MapReduce -> $where
db.foo.find({"$where" : "function() { return this.x + this.y == 10; }"}) // $where可以支持javascript函数作为查询条件
db.foo.find().sort({"x" : 1}).limit(1).skip(10); // 返回第(10, 11]条,按"x"进行排序; 三个limit的顺序是任意的,应该尽量避免skip中使用large-number
查询范围 排序
db.x_user_address_book.find().limit(20000).sort({createTime:-1})
插入
db.getCollection("x_user_login_log").insert(
[
// 1
{
"_id": ObjectId("60817dcd52faff0007b1848d"),
"_class": "com.xcb.user.entity.UserLoginLog",
"phoneNumber": "18788811857",
"ipAddress": "223.104.36.171",
"createUserId": "607c28ea6b2f0700089af832",
"updateUserId": "system",
"createTime": ISODate("2021-04-22T13:44:45.61Z"),
"updateTime": ISODate("2021-04-22T13:44:45.61Z"),
"deletedFlag": NumberInt("0")
},
// 2
{
"_id": ObjectId("60817cbd52faff0007b1848b"),
"_class": "com.xcb.user.entity.UserLoginLog",
"phoneNumber": "13148487148",
"ipAddress": "218.108.206.194",
"createUserId": "60817cbd52faff0007b1848a",
"updateUserId": "system",
"createTime": ISODate("2021-04-22T13:40:13.94Z"),
"updateTime": ISODate("2021-04-22T13:40:13.94Z"),
"deletedFlag": NumberInt("0")
}
]
);
聚合时间分组,并倒序
db.x_user_address_book.aggregate(
[
{$group:{
_id:{ $dateToString: { format: "%Y-%m-%d", date: "$createTime" } },
count:{$sum:1}
}
},
{ $project: {
日期: { $toUpper: "$_id" },
总数: "$count",
_id: 0 }
},
{ $sort: { "日期": -1 }},
]
)
聚合查询
match
#match 用于对数据进行筛选
{"$match":{"字段":"条件"}},可以使用任何常用查询操作符$gt,$lt,$in等
#例1、select * from db1.emp where post='teacher';
db.emp.aggregate({"$match":{"post":"teacher"}})
#例2、select * from db1.emp where id > 3;
db.emp.aggregate(
{"$match":{"_id":{"$gt":3}}},
)
project
# project翻译为投射 ,即将一个数据结果映射为另一个结果 过程中可以对某些数据进行修改 控制其最终显示的结果
{"$project":{"要保留的字段名":1,"要去掉的字段名":0,"新增的字段名":"表达式"}}
#1、select name,post,(age+1) as new_age from db1.emp;
db.emp.aggregate(
{"$project":{
"name":1,
"post":1
}})
#2、表达式之数学表达式
{"$add":[expr1,expr2,...,exprN]} #相加
{"$subtract":[expr1,expr2]} #第一个减第二个
{"$multiply":[expr1,expr2,...,exprN]} #相乘
{"$divide":[expr1,expr2]} #第一个表达式除以第二个表达式的商作为结果
{"$mod":[expr1,expr2]} #第一个表达式除以第二个表达式得到的余数作为结果
#例:所有人年龄加1显示
db.emp.aggregate(
{"$project":{
"name":1,
"post":1,
"new_age":{"$add":["$age",1]}
}})
# 错误示范: 原因:参加运算的字段不能被影藏
db.emp.aggregate(
{"$project":{
"name":1,
"salary":1,
"age":0,
"new_age":{"$add":["$age",1]}
}})
#3、表达式之日期表达式:$year,$month,$week,$dayOfMonth,$dayOfWeek,$dayOfYear,$hour,$minute,$second
#例如:select name,date_format("%Y") as hire_year from db1.emp
db.emp.aggregate(
{"$project":{"name":1,"hire_year":{"$year":"$hire_date"}}}
)
#例如查看每个员工的工作多长时间
db.emp.aggregate(
{"$project":{"name":1,"hire_period":{
"$subtract":[
{"$year":new Date()},
{"$year":"$hire_date"}
]
}}}
)
#4、字符串表达式
{"$substr":[字符串/$值为字符串的字段名,起始位置,截取几个字节]}
{"$concat":[expr1,expr2,...,exprN]} #指定的表达式或字符串连接在一起返回,只支持字符串拼接
{"$toLower":expr}
{"$toUpper":expr}
db.emp.aggregate( {"$project":{"NAME":{"$toUpper":"$name"}}})
#5、逻辑表达式
$and
$or
$not
其他见Mongodb权威指南
group
# $group用于分组
# 分组后具体信息被影藏
db.emp.aggregate(
{"$match":{"_id":{"$gt":3}}},
{"$group":{"_id":"$post"}}
)
# 通常我们要对分组后的内容进行统计这就需要对应的几个聚合函数
# select id,avg(salary) from db1.emp where id > 3 group by post;
db.emp.aggregate(
{"$match":{"_id":{"$gt":3}}},
{"$group":{"_id":"$post",'avg_salary':{"$avg":"$salary"}}},
)
# math用于匹配 与mysql不同的是没有顺序限制 每一个操作像是一个管道接收上一个的数据进行处理再传给下一个
# select id,avg(salary) from db1.emp where id > 3 group by post having avg(salary) > 10000;
db.emp.aggregate(
{"$match":{"_id":{"$gt":3}}},
{"$group":{"_id":"$post",'avg_salary':{"$avg":"$salary"}}},
{"$match":{"avg_salary":{"$gt":10000}}}
)
# 对应的聚合函数 $sum、$avg、$max、$min、$first、$last
#1、将分组字段传给$group函数的_id字段即可
{"$group":{"_id":"$sex"}} #按照性别分组
{"$group":{"_id":"$post"}} #按照职位分组
{"$group":{"_id":{"state":"$state","city":"$city"}}} #按照多个字段分组,比如按照州市分组
#2、分组后聚合得结果,类似于sql中聚合函数的聚合操作符:$sum、$avg、$max、$min、$first、$last
#例1:select post,max(salary) from db1.emp group by post;
db.emp.aggregate({"$group":{"_id":"$post","max_salary":{"$max":"$salary"}}})
#例2:去每个部门最大薪资与最低薪资
db.emp.aggregate({"$group":{"_id":"$post","max_salary":{"$max":"$salary"},"min_salary":{"$min":"$salary"}}})
#例3:如果字段是排序后的,那么$first,$last会很有用,比用$max和$min效率高
db.emp.aggregate({"$group":{"_id":"$post","first_id":{"$first":"$_id"}}})
#例4:求每个部门的总工资
db.emp.aggregate({"$group":{"_id":"$post","count":{"$sum":"$salary"}}})
#例5:求每个部门的人数
db.emp.aggregate({"$group":{"_id":"$post","count":{"$sum":1}}})
#3、数组操作符
{"$addToSet":expr}:不重复
{"$push":expr}:重复
# 等同于group_concat
#例:查询岗位名以及各岗位内的员工姓名:select post,group_concat(name) from db1.emp group by post;
db.emp.aggregate({"$group":{"_id":"$post","names":{"$push":"$name"}}})
db.emp.aggregate({"$group":{"_id":"$post","names":{"$addToSet":"$name"}}})
sort ,limit ,skip
{"$sort":{"字段名":1,"字段名":-1}} #1升序,-1降序
{"$limit":n}
{"$skip":n} #跳过多少个文档
#例1、取平均工资最高的前两个部门
db.emp.aggregate(
{
"$group":{"_id":"$post","平均工资":{"$avg":"$salary"}}
},
{
"$sort":{"平均工资":-1}
},
{
"$limit":2
}
)
#例2、
db.emp.aggregate(
{
"$group":{"_id":"$post","平均工资":{"$avg":"$salary"}}
},
{
"$sort":{"平均工资":-1}
},
{
"$limit":2
},
{
"$skip":1
}
)
排序:$sort、限制:$limit、跳过:$skip
sample
# 随机取出n条记录
#集合users包含的文档如下
{ "_id" : 1, "name" : "dave123", "q1" : true, "q2" : true }
{ "_id" : 2, "name" : "dave2", "q1" : false, "q2" : false }
{ "_id" : 3, "name" : "ahn", "q1" : true, "q2" : true }
{ "_id" : 4, "name" : "li", "q1" : true, "q2" : false }
{ "_id" : 5, "name" : "annT", "q1" : false, "q2" : true }
{ "_id" : 6, "name" : "li", "q1" : true, "q2" : true }
{ "_id" : 7, "name" : "ty", "q1" : false, "q2" : true }
#下述操作时从users集合中随机选取3个文档
db.users.aggregate({"$sample":{"size":3}})
随机选取n个:$sample